
PIC Architecture

Instruction Set & Operations

PICs-Instruction Set

 Have Covered Instruction Set Basics

 Accumulator Architecture

 Direct addressing

 Indirect addressing

 Now lets look at the instructions

MOVE instructions

 PIC spend a lot of time moving data around as

data stored in memory

 movlw 20

 Move the hex value H’20’ into W

 To load a decimal must use the correct assembler

directive - D’20’

 movlw -2

 Loads B’1111 1110 into WREG

More on MOVE

 Initialization of a variable

 movlw B’11100000’

 movwf TRIST

 Initialize the PORTB data direction register

 Assembler MACRO

 MOVLF B’11100000’,TRISB

 Assembled into the two instructions above

The movff instruction
 movff PORTB, PORTB_COPY
 movff - a two-word instruction

 Thus source and destination have 12-bit addresses
 Source – instruction bits + BSR

 Destination – instruction 2nd byte

 Moves data from a 1-byte source to a 1-byte
destination.

 For instruction memory as efficient as the regular
move instruction.

The movwf

 movwf f(,Banked) – Move WREG to f

 For storing back the result of an operation

 Does not affect status bits

The movf instruction

 Move the value and set the status register bits

appropriately

 Affects N and Z bits

Move summary
 movlw k - load literal value

 movwf MYVAR - move value but do not affect
status bits

 movff V1,V2 - move data at source address to
data at destination address

 movf f,F/W - move value and affect status bits
 What does movf COUNT,F do?

Other move/load instructions

 lrsr 0,num1 - load FSR register

 1st argument is FSR register number

 2nd argument is value to load

 Saving a FSR register

 movff FSR0L,FSR0L_TEMP

 movff FSR0H,FRS0H_TEMP

 Loading a FSR register

 movff FSR0L_TEMP,FSR0L

 movff FRS0H_TEMP,FSR0H

Load BSR register & other

 movlb 2

 Load the value of 2 into the BSR register

 clrf TEMP – Load 0x00 into variable TEMP

 setf TEMP – Load 0xff into variable TEMP

 swapf f - swap nibbles of f

Single operand instructions

 Single bit instructions

 bsf PORTB,0 - Set the lsb of PORTB

 bcf PORTB,1 - clear bit 1 of PORTB

 btg PORTB,2 - toggle bit 2 of PORTB

 Rotate instructions illustrated on next slide

 rlcf rlncf rrcf rrncf

 cf rotate including carry bit

 ncf rotate without carry bit

Logical instructions

 andlw B’00001111’ And WREG with value

 andwf f,F/W - AND WREG with f putting result

back in F or WREG

 iorlw k -Inclusive OR literal value and WREG

 iorwf f,F/W – inclusive OR WREG with f and put

result into f or WREG

 xorlw k, xorwf f,F/W - Exclusive OR

Arithmetic

 addlw k, addwf f,F/W

 addwfc f,F/W - Add WREG, F and carry bit

 daw – Decimal adjust sum of pack BCD

 subwf, sublw

 subwfb f,F/W - subtract with borrow

Multiplicaiton

 mullw k - multiply WREG with literal value k

putting result in PRODH:PRODL reg - WREG

unaffected

 mullwf f(,Banked) - Multiply WREG with f putting

results in PRODH:PRODL - both WREG and f

remain unchanged

Branches

 Needed for program flow control

 Tests on status register

 bc, bnc, bz, bnz, bn, bnn, bov, bnov

 Use the c, x, n, and ov bits of the status register

 bra – branch always

Conditional Skip instructions
 Ten further instructions that test for a condition

and skip over the next instruction if the condition
is met.
 Next instruction is typically a branch or rcall

 Very useful at end of a loop

 Loop code ….

 decfsz count,F ;Decrement and skip if zero

 bra top_of_loop

Skip instructions

 cpfseq f - skip if f = WREG

 cpfsgt f - skip if f > WREG

 cpfslt f - skip if f < WREG

 tstfsz t - Test f, skip if zero

 decfsz f,F/W - Decr f, res->WREG,skip if 0

 dcfsnz f,F/W - Decr f, res->WREG,skip not 0

 incfsz f,F/W – Incr f, res->WREG, skip if 0

 infsnz f,F/W – Incr f, res->WREG, skip not 0

Other – Subroutine, interrupt
 rcall label - call subroutine (within 512 instr)

 call label – call subroutine (anywhere)

 call label, FAST - call subroutine, copy state to
shadow registers

 return – return form subroutine

 return FAST - return and restore from shadow
registers

 return k - return and put value k in WREG

cont
 retfie - return from interrupt and re-enable

 retfie FAST – return, re-enable- restore

 push - Push addr of next instruction onto stack

 pop - discard address on top of stack

 clrwdt - clear watchdog timer

 sleep - Go into standby mode

 reset - software controlled reset

 nop

Review: PIC instructions
 Logical operations
 andlw/andwf
 iorlw/iorwf
 xorlw/xorwf

 Rotates
 rrf
 rlf

 Jumps/calls/return
 goto
 call
 return/retlw/retfie

 Miscellaneous
 nop
 sleep/clrwdt

Conditional Execution

Examples:

 btfsc TEMP1, 0 ; Skip the next instruction if bit 0 of TEMP1 equals 0

 btfss STATUS, C ; Skip the next instruction if C==1

 decfsz TEMP1, F ; Decrement TEMP1, skip if TEMP1==0

 incfsz TEMP1, W ; W <- TEMP1+1 , skip if W==0 (TEMP1==0xFF)

 ; Leave TEMP1 unchanged

btfsc f, b ;Test bit b of register f, where b=0 to 7, skip if clear

btfss f, b ;Test bit b of register f, where b=0 to 7, skip if set

decfsz f, F(W) ;decrement f, putting result in F or W, skip if zero

incfsz f, F(W) ;increment f, putting result in F or W, skip if zero

STATUS bits:

 none

 Conditional execution in PIC: skip next instruction if condition true

 Two general forms
 Test bit and skip if bit clear/set

 Increment/decrement register and skip if result is 0

Example

Show the values of all changed registers after each

of the following sequences

What high-level operation does each perform?

(a) movf a, W

 sublw 0xA

 btfsc STATUS, Z

 goto L1

 incf b, W

 goto L2

L1

 decf b, W

L2

 movwf a

(b) movf NUM2, W

 subwf NUM1, W

 btfss STATUS, C

 goto BL

 movf NUM1, W

 goto Done

BL

 movf NUM2, W

Done

 movwf MAX

Example solution (part a)

 movf a, W W = a

 sublw 0xA W = 10 – a

 btfsc STATUS, Z Skip goto if result

 is non-zero

 goto L1 Goto L1 if result == 0

 Reach this point if

 result non-zero

 incf b, W W = b + 1

 goto L2

L1

 decf b, W W = b - 1

L2

 movwf a a = W value depends

 on what’s executed before this

High-level operation:

if ((10 – a) == 0)

 a = b – 1

else

 a = b + 1

Example solution (part b)

 movf NUM2, W W = NUM2

 subwf NUM1, W W = NUM1 – W

 = NUM1 – NUM2

 btfss STATUS, C Carry indicates

 “above”

 if set, NUM1 > NUM2

 goto BL

 movf NUM1, W if (NUM1 >= NUM2)

 W = NUM1

 goto Done Skip “below” section

BL

 movf NUM2, W if (NUM1 < NUM2)

 W = NUM2

Done

 movwf MAX

High-level operation:

if (NUM1 < NUM2)

 MAX = NUM2

else

 MAX = NUM1

Working with 16-bit data

Assume a 16-bit counter, the upper byte of the counter is called COUNTH and the lower byte is
called COUNTL.

Decrement a 16-bit counter

 movf COUNTL, F ; Set Z if lower byte == 0

 btfsc STATUS, Z

 decf COUNTH, F ; if so, decrement COUNTH

 decf COUNTL, F ; in either case decrement COUNTL

Test a 16-bit variable for zero
 movf COUNTL, F ; Set Z if lower byte == 0

 btfsc STATUS, Z ; If not, then done testing

 movf COUNTH, F ; Set Z if upper byte == 0

 btfsc STATUS, Z ; if not, then done

 goto BothZero ; branch if 16-bit variable == 0

CarryOn

A Delay Subroutine
; ***

; TenMs subroutine and its call inserts a delay of exactly ten milliseconds

; into the execution of code.

; It assumes a 4 MHz crystal clock. One instruction cycle = 4 * Tosc.

; TenMsH equ 13 ; Initial value of TenMs Subroutine's counter

; TenMsL equ 250

; COUNTH and COUNTL are two variables

TenMs

 nop ; one cycle

 movlw TenMsH ; Initialize COUNT

 movwf COUNTH

 movlw TenMsL

 movwf COUNTL

Ten_1

 decfsz COUNTL,F ; Inner loop

 goto Ten_1

 decfsz COUNTH,F ; Outer loop

 goto Ten_1

 return

Yes

Yes

COUNTH = TenMsH

COUNTL = TenMsL

COUNTL = COUNTL - 1

COUNTL == 0 ?
No

Yes

No

return

COUNTH = COUNTH - 1

COUNTH == 0 ?

Yes

Applications

 Personal information products: Cell phone,
pager, watch, pocket recorder, calculator

 Laptop components: mouse, keyboard,
modem, fax card, sound card, battery charger

 Home appliances: door lock, alarm clock,
thermostat, air conditioner, tv remote, hair
dryer, VCR, small refrigerator, exercise
equipment, washer/dryer, microwave oven

 Toys; video games, cars, dolls, etc.

Summary

 Microprocessors and embedded controllers are a

ubiquitous part of life today

 These devices come in a wide variety of

configurations and designs

 Headhunters report that EEs familiar with µC, µP

design are in the highest possible demand

 Feedback

Assignment

 Illustrate PIC instruction set with example.

